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Derivations

Let g be a Lie algebra.

Definition
A derivation of g is a linear map D : g −→ g satisfying

D
(
[x, y]

)
=
[
D(x), y

]
+
[
x,D(y)

]
for all x, y ∈ g. y

Der g denotes the set of all derivations of g.
It is a Lie algebra under [D1, D2] = D1 ◦D2 −D2 ◦D1.

Question
Can we characterize all of the derivations of g? y



Derivations

Definition
Derivations of the form [x, ·] for x ∈ g
are called inner derivations. The set of
inner derivation of g is denoted ad g.
All other derivations are termed outer
derivations. y

Theorem (classical result [1, 7])
If g is semisimple over a field of
characteristic not 2, then
Der g = ad g. y

Further Results

q is a parabolic subalgebra of
semisimple g over a C-like field.
Der q = ad q (independently by
Legar and Luks and by Tolpygo —
1972 [6, 8]).
Outer derivation of Kac-Moody
algebras and their Borel
subalgebras characterized
(Farnsteiner — 1988 [4]).



Zero Product Determined Algebras

Let A be an algebra with multiplication ∗.

Definition
A is called zero product determined (ZPD) if for
each bilinear map ϕ : A×A −→ V , if

ϕ(x, y) = 0 whenever x ∗ y = 0,

then there is a linear map f : A2 −→ V satisfying

ϕ(x, y) = f
(
x ∗ y

)
for all x, y ∈ A. y

A×A ϕ //

∗
��

V

A2
f
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Figure : g is ZPD

Question
Which Lie algebras are ZPD? y



Zero Product Determined Algebras

Theorem (B, Huang — 2014 [3])
Let (A, ∗) be an algebra. Denote the map x⊗ y 7→ x ∗ y by µ : A⊗A −→ A2. A is
ZPD if and only if Kerµ is generated by elementary tensors. y

Further Results

sl(Fn) and gl(Fn) are ZPD (Brešar, Grašič, and Ortega — 2009 [2]).
The classical families Br, Cr, and Dr are ZPD (Grašič — 2010 [5]).
Parabolic subalgebras of simple Lie algebras over a C-like field are ZPD (Wang, et
al. — 2011 [9]).
Direct sums of ZPD algebras are ZPD (B, Huang — 2014 [3]).



Results

Theorem
Let q be a parabolic subalgebra of a reductive Lie algebra g over R or over a C-like
field. Let L be the set of all linear transformations mapping q into qZ that send [q, q]
to 0. Then Der q has the Lie algebra direct sum decomposition

Der q = L⊕ ad q.

y

This helps us answer our original
question: whether or not Der q is ZPD.

Question
Can we describe the members of L
more concretely? y



Results

L =

{
f : q

linear // q

∣∣∣∣ f(q) ⊆ qZ and f
(
[q, q]

)
= 0

}
.

We use the Langland’s decomposition of q to understand members of L.
Write g = gZ ⊕ gS , then q = gZ ⊕ qS and qZ = gZ .
qS decomposes as qS = ln n, with n nilpotent and l reductive, so l = lZ ⊕ lS .

We show that [q, q] = lS + n, so that

q = gZ + l+ n

= gZ + lZ + lS + n

= gZ + lZ + [q, q].

Then members of L are realized as
matrices with block form


gZ lZ [q, q]

gZ ∗ ∗ 0
lZ 0 0 0

[q, q] 0 0 0

.



Results

Theorem (Wang, et al. — 2011 [9])
Let q be a parabolic subalgebra of a simple Lie algebra g over a C-like field. q is ZPD.y
Wang, et al.’s proof has a minor error, which we correct.

Lemma
An abelian Lie algebra is ZPD. y

Proof.
The lemma follows from the elementary
tensor description of ZPD from [3].

Theorem
If g is reductive, then q is ZPD. y

Proof.
q = gZ ⊕ qS . qS is ZPD by the result
of Wang, et al. in [9], and by direct
sum decomposition, q is ZPD.



Results

Theorem
Let q be a parabolic subalgebra of a reductive Lie algebra g over a C-like field. Then
the derivation algebra Der q is ZPD. y

Proof.
From earlier, Der q = L⊕ ad q.
ad q ∼= qS is ZPD by the result of Wang, et al. in [9].
We show that L is ZPD with a tensor argument.
Then Der q is ZPD by direct sum decomposition.
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